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mechanized operations. The proposed NDC target
includes the restoration of 15 Mha of pasture by 2030
in addition to the 15 Mha already proposed by Brazil’s
Low Carbon Agriculture Plan (Brasil 2012, Brasil
2015), aiming for a total restoration target of 30 Mha.
The expected emission reduction from this commit-
ment relies on the ability of restored pasture to seques-
ter carbon in the soil, while at the same time
improving roughage digestibility to reduce enteric
methane emissions (Maia et al 2009, Braz et al 2013,
Herrero et al 2016). In addition, more intensive sys-
tems can reduce GHG emissions per unit of beef by
shortening the time to slaughter (Cardoso et al 2016).

Pasture restoration, however, is only one option in
an array of intensi� cation approaches. Alternative
and/or complementary strategies include additional
nutrients for calves in the suckling phase (Creep feed-
ing), grain-feed supplements for grazing animals, ani-
mal � nishing in con� nements or feedlots, and animal
� nishing in semi-con� nement (i.e. grazing animals
receiving a high protein-energetic diet in the fattening
phase), all of which aim to accelerate the weight gain of
individual animals (Thornton and Herrero 2010, Bar-
bosa et al 2015). Although market forces are pushing
intensi� cation towards con� ned feeding operations
(Rabobank 2014), government interventions empha-
size a more pasture-based mode of intensi� cation
(Brasil 2012, Brasil 2015). A particular challenge for
policy makers, therefore, is to determine a more opti-
mal mix of strategies that could meet future demands
for beef, lower GHG emissions and avoid pasture
expansion into native vegetation areas in a context of
increasing economic competition.

The Brazilian livestock sector still has many
opportunities to increase the use of intensi� cation
strategies. Although Mato Grosso, Brazil’s largest beef
producing state, had increased the number of animals
in feedlots to about 0.89 Mhd in 2012 (� gure S1 is
available online at stacks.iop.org/ERL/14/125009/

mmedia), accounting for almost a quarter of total of
con� ned animals in Brazil (ANUALPEC 2015), the
state continues to rely mostly on extensive ranching
with low pasture stocking density rates (Barbosa et al
2015). We estimate that approximately 80% of muni-
cipalities in Mato Grosso, 90% of which comprise of
pasturelands, present some level of degradation, of
which ≈8 Mha could be characterized as having high
levels of degradation (Dias-Filho 2014) (table S1).
Some researchers fear that the increasing beef demand
in Brazil, which is expected to grow from 9.9 Mt of car-
cass weight equivalent (CWE) in 2018 to 12.1 Mt CWE
in 2028 (MAPA 2018), may occur at the cost of native
vegetation losses (Arima et al 2011). In Mato Grosso,
for example, complex land use dynamics related to
livestock and agricultural production as well as land
speculation (Merry and Soares-Filho 2017, Miranda
et al 2019) may drive native vegetation losses in adja-
cent areas (Barona et al 2010). At the same time, the
adequate infrastructure and attractive production

conditions in Mato Grosso (Barbosa et al 2015) pro-
vide great potential for intensi� cation of the livestock
sector that may reduce requirements for new land.

A number of studies have analyzed cattle ranching
intensi� cation with a focus on separate productive,
economic or environmental aspects under quite spe-
ci� c conditions (Strassburg et al 2014, Cardoso et al
2016, de Oliveira Silva et al 2016, de Oliveira Silva et al
2017). At the same time, however, these studies
remain unclear about the economic and environ-
mental effects of different strategy mixes for cattle
intensi� cation in a geographically varying regional
context. Addressing this research gap requires taking
into account that technology adoption and produc-
tion strategies may vary across space, time, and land-
owner characteristics. Climate and terrain aptitude,
property size, rancher background, local infra-
structure, distance to markets and input and output
prices will all determine if and where intensi� cation
modes may succeed.

Here we analyze the potential production, eco-
nomic return and GHG emissions from three intensi-
� cation strategy mixes with varying emphasis on
pasture restoration, creep feeding and feedlot � nishing
for the period 2012–2030. To this end, we developed a
multi-sectoral deterministic model (SIMPEC) to
represent a beef production cycle and its associated
impacts on economic outcomes and GHG emissions
(supplementary material note) and applied it to the
state of Mato Grosso. The remainder of this paper pro-
vides a description of the analytical framework, out-
lines possible intensi� cation scenarios, and then
discusses the results of the simulation runs. More
information and speci� c details are provided in the
supplementary material.

2. Methods

2.1. General approach
Our analysis of the potential production, economic
return and GHG emissions via different pathways
involves four scenarios for the livestock sector in Mato
Grosso: a baseline scenario (BASE) and three intensi� -
cation strategy mixes that emphasize pasture restora-
tion (MIX-PAST), feedlot � nishing (MIX-FEED) and
creep feeding plus feedlot � nishing (MIX-FEED+).
The analysis of these scenarios builds on a model for
the simulation of livestock production systems: SIM-
PEC model (Portuguese acronym: Simulação de
Sistemas de Produção da Pecuária de Corte). The
SIMPEC model contains three components or mod-
ules (� gure 1). The herd module simulates the
dynamics of a complete beef production cycle at
selected spatial units. This production cycle occurs in a
closed domain, which means that factors like buying
and selling land are exogenous to the simulation. The
economic module calculates the � nancial costs and
returns of adopting the livestock management
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practices that are characteristic of each scenario. The
GHG module, � nally, calculates the GHG emissions
that are associated with each scenario. Section 2.2
elaborates on the input parameters for these modules,
while section 2.3 discusses the scenarios.

2.2. Input parameter settings
In the herd module, the SIMPEC model simulates the
dynamics of a representative ranching system on
monthly time steps from 2012 to 2030 for each
municipality in Mato Grosso (equations S1–S7—herd
dynamics module in supplementary material). This
simulation accounts for the municipality’s pasture
stocking density rate (i.e. animal units (AU) per
hectare; 1 AU=450 kg of live weight), pasture area,
and property size distribution in 2012. As of 2012,
roughly 0.89 Mhd are being � nished in feedlots, while
0.33 Mhd are � nished on semi-con� nements
(ANUALPEC2015). The technical coef� cients (table 1)
adopted for extensive systems are typical for cattle
ranching in central-west Brazil (Corrêa et al 2006),
while those for improved systems are based on
secondary information and expert consultation.

Feedlot and semi-con� nement � nishing occurs
preferentially during the dry season. In feedlots, the
animals receive a diet based on grains, silage and a
mineral mix, while the supplementary feeding in
semi-con� nement consists mainly of grains and
mineral mix. For speci� c modeled scenarios, we also
assume the adoption of creep feeding. For an
improved economic and development context,

SIMPEC takes into account local agricultural aptitude,
current and future regional logistics along with under-
lying scenarios of land use change. The amount and
location of future pasture areas, agricultural and forest
plantation expansion as well as forest restoration to
comply with the Brazilian Forest Code in low produc-
tive pasture areas are incorporated using previously
published results (Soares-Filho et al 2016, Rochedo
et al 2018) (table S2).

While the BASE scenario assumes that the current
upward deforestation trend will continue into the
future (Soares-Filho et al 2016), the three intensi� ca-
tion scenarios assume lower rates of deforestation
(Rochedo et al 2018) needed to attain the targets of the
NDC and remain under the Forest Reference Levels
Emissions for the Cerrado and the Amazon biomes
(MMA and MCTI 2014, MMA 2017). Therefore, the
intensi� cation scenarios develop under a strong envir-
onmental governance (Rochedo et al 2018) that
includes the full implementation of Brazilian policies
to achieve its NDC targets (Brasil 2015). Under these
circumstances, our study assesses the possible path-
ways to achieve beef intensi� cation as a component of
the ABC Program—Brazil’s main strategy for sustain-
able low-carbon agricultural development. Although
pasturelands still expand in detriment of native vege-
tation, with commensurate GHG emissions (tables S2
and S3), this is much less in a strong governance
scenario assumed for the intensi� cation analysis
(Rochedo et al 2018). Nevertheless, the total ranching
area in Mato Grosso reduces due to agricultural land

Figure 1. Overall � owchart of the SimPec model, depicting main inputs (light blue), outputs (intermediate blue), and processing
modules (dark blue).
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expansion over degraded pasturelands as projected by
Rochedo et al (2018), plus additional cropland needed
to feed the herd under the different intensi� cation
strategies (tables S2 and S4). To this end, we assume
that all additional feeding will come from mostly soy-
corn (92% of the latter) grown as single crop (table S4).
This is a conservative approach given that 70% of corn
in Brazil is already harvested as a second crop (mostly
in soy-corn double cropping systems) and this � gure is
expected to rise by 2030 (MAPA 2018).

For each scenario, all pastures are initially included
in a low productive category (extensive category) with
varying stock density according to municipal data for
the year of 2012 (� gure 3). Under each scenario, the

model restores pastures in � xed annual rates. The
location of restored pasture takes into account the
regional potential for intensi� cation (Barbosa et al
2015). We de� ne the carrying capacity of restored pas-
ture (� gure S2) using estimates of fodder grass herbage
accumulation (Strassburg et al 2014). Intensi� cation
in our model takes place only in properties equal or
larger than 500 ha due to scale of production needed to
pay back investments. This is equivalent to 19 Mha or
78% of pasturelands in Mato Grosso (� gure S3).
Nonetheless, all pasture and outputs within a munici-
pality are considered when computing total produc-
tion and average productivity under each modeled
scenario (see section 2.3). Initial feedlot capacity is

Table 1. Technical coef� cients for cattle ranching systems at the present and under our simulation scenariosa.

per scenario

Currentb BASE MIX-PAST MIX-FEED MIX-FEED+

Herd ratio (bull/cows) 1:25 1:35 1:35 1:35 1:35

Calving rate (%) 60 70 80 80 80

Mortality<12 months (%) 5.0 4.0 3.0 3.0 3.0

Mortality>12 months (%) 2.0 1.5 1.0 1.0 1.0

Weight calves at weaning (kg) 160 170 180 180 220c

Weight heifers at weaning (kg)d 145 160 170 170 210c

Average growth rate of steers in semi-con� nement (% yr−1) 3.0 3.0 3.0 3.0

Average growth rate of steers in feedlot (% yr−1) 3.6 3.6 6.7 6.7

Average area restored annually (ha × 1000) 156 278 216 195

for all scenarios

MALE FEMALE

Weight at birth (kg) 30 30

Weight adult animal (kg) (cows and bulls) 550 420

Weaning (months) 7 7

ADG—extensive pasture dry season (kg d−1)b,c,e 0.10 0.08

ADG—extensive pasture wet season (kg d−1)b,c,e 0.50 0.38

ADG—improved pasture dry season (kg d−1)c,e 0.20 0.15

ADG—improved pasture wet season (kg d−1)c,e 0.60 0.40

ADG—semi-con� nement (kg d−1)f 0.85 —
ADG—feedlot (kg d−1)g 1.5 —
Initial weight—feedlot and semi-con� nement (kg) 360 —
SW—pasture (kg)b,c 490 390

SW—feedlot and semi-con� nement (kg) 510 —
CDP—pasture (%)c 52 49

CDP—semi-con� nement (%)c 53 —
CDP—feedlot (%)g 54 —
CDP—discarded animals (cows and bulls) (%)c 50 49

Note. ADG=average daily weight gain; SW=Slaughter weight; CDP=Carcass dressing percentage.
a In the projected scenarios, these values are applied to areas appropriate for intensi� cation (in properties larger than 500 ha). For other

areas, we keep constant the current technical coef� cients. We assume the transition of technical coef� cients occurring gradually within an

initial time period of 10 years.
b Technical coef� cients for a typical extensive cattle ranching system in the Brazilian Midwest (Corrêa et al 2006).
c In the MIX-FEED+ scenario, we assume the use of creep feeding, hence calves are weaned 40 kg heavier by the consumption of 1% of body

weight of protein-energy-mineral supplemented during 3 months (Carvalho et al 2003). Creep feeding provides additional nutrients for

calves in the suckling phase. The composition of creep feeding diet is in table S6.
d Values de� ned based on experts’ consultation.
e We assume that the animals on pasture receive protein-mineral supplement in the dry season only and mineral supplement in wet season

only. Table S6 shows the consumption and composition of each supplement feeding. More information about the de� nition of dry and wet

season are provided in the supplementary methods.
f ADG supported by the supplement consumption of 1.4% of body weight under semi-con� nement (Barbosa et al., 2016). Feeding

composition of these animals is described in table S6.
g Values based on Oliveira and Millen (2014). ADG is supported by the consumption of 2.3% of body weight of animals in feedlot (table S6).

4

Environ. Res. Lett. 14 (2019) 125009



3. Results

Here we describe some key results from the simulation
runs. These include herd size and productivity; invest-
ments and economic returns; GHG emissions and the
overall GHG budget.

3.1. Herd size and productivity
In the baseline scenario (BASE), the total herd in Mato
Grosso will grow at a mean annual rate of 1.5%,
reaching a total of 38 Mhd (� gure 2) and a stock
density of 0.90 AU—animal units (1 AU=450 kg live
weigh)—per hectare (0.8% yearly growth) produced
on 28 Mha of pasture by 2030 (table 2). Even under
this scenario, at least 2.8 Mha of pastures will need to
be restored to accommodate the future herd (table 2).
Steers � nished in feedlots increase by 17% to a total of
23% of slaughtered animals, and those � nished in
semi-con� nement will compose 8% of the slaughtered
animals (� gures S5, S6). Although, average productiv-
ity per hectare in intensi� ed systems will increase
annually by 2%, a future output beef production of
1.8 Mt under this scenario will be below the expected
contribution of Mato Grosso to meet the national
production target (table 2).

In order for the beef sector to meet the future plan-
ned production of 2.0 Mt—the share of Mato Grosso
rated from the national target (scenarios MIX-PAST,
MIX-FEED and MIX-FEED+scenarios)—, the
development scenario that focused more heavily on
pasture restoration (MIX-PAST) requires the restora-
tion of 5.0 Mha of the total 25.1 Mha of pastures by
2030 (table 2). Stock density in intensi� ed systems will
grow at a mean annual rate of 2.3%, reaching
1.15 AU ha−1 by 2030 (table 2). The number of steers
� nished in feedlot and pasture with supplemental
feeding will steadily increase alongside the reduction
of the slaughter age (� gures S5, S6). These

improvements will enable pasture productivity (mea-
sured in kg of CWE ha−1) to increase by 107%. As a
result, the herd will grow to 39.4 Mhd (� gure 2). In the
MIX-FEED scenario, where more investment and
capacity is developed in feedlot � nishing, this same
level of production would be met with a herd of 37.5
Mhd on 25.0 Mha of pasture, of which 3.9 Mha will
need to be restored (22% less than that of MIX-PAST)
(table 2). The increased steers � nishing in feedlots
(33% of slaughtered animals) and the greater beef pro-
ductivity per animal (57 kg CWE head−1) in intensi-
� ed systems will be responsible for this larger
production from a smaller herd. In the MIX-FEED+
scenario, the larger share of steers � nished in feedlots
alongside the adoption of creep feeding will enable to
meet the future planned demand for beef production
in Mato Grosso by 2030 with a herd of only 35 Mhd
(2.4 and 4.4 Mhd less than MIX-FEED and MIX-PAST
scenarios, respectively). In the total of 24.7 Mha of
pasture, 3.51 Mha will need to be restored (10% and
30% less than that of MIX-FEED and MIX-PAST,
respectively) (table 2). In this scenario, the increase of
weaning weight by the creep feeding and the 34% of
slaughtered animals � nished in feedlots (� gure S6)
result in greater beef productivity per animal (63 kg
CWE head−1) as the slaughter age is less than 29
months, which is responsible for the increased pro-
duction volume from a smaller herd.

3.2. Investments and economic returns
Pasture restoration is an expensive form of intensi� ca-
tion. This implies that the highest investment costs will
occur in the MIX-PAST scenario that reforms the
largest pasture area, followed by MIX-FEED, MIX-
FEED+ and BASE (table 2). However, the lower
productivity in BASE, in which the least intensi� cation
effort, will result in higher marginal investment. In
MIX-FEED and MIX-FEED+ scenarios, the overall

Figure 2. Herd’s growth from 1996 to 2012 and under modeled scenarios.
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investments are, respectively, 17% and 28% lower
than those of MIX-PAST for the same productivity per
hectare. At the same time, system intensi� cation
implies an increase in operational costs due to
supplementary feeding and pasture maintenance
costs. The larger the share of grains in animal feeding,
the higher is the operational cost per animal.

Nevertheless, increased productivity pays off higher
operational costs (table 2 and � gure 3). It implies that
in the MIX-PAST scenario, operational costs per
animal in intensi� ed systems are 6% lower than that of
MIX-FEED+, but the larger herd size results in 9%
higher costs per hectare. Additionally, the costs per
unit of beef produced in the MIX-PAST scenario are

Table 2. Current values and management scenarios outputs.

2030

Model results Current BASE MIX-PAST MIX-FEED MIX-FEED+
Herd

Number of animals (Mhd)a 29.1 38.3 39.4 37.5 35.1

Slaughtered animals (Mhd)a 5.29 7.45 8.82 8.42 8.39

Steers � nished in feedlot (Mhd)a 0.89 1.67 1.73 2.85 2.82

Steers � nished in semi-con� nement (Mhd)a 0.32 0.54 0.59 0.45 0.41

Average age at slaughtering (Months)b 38.9 35.1 33.3 32.8 28.5

Overall stocking density rate (AU ha−1) a 0.79 0.90 1.04 0.97 0.95

Stocking density rate of improved systems (AU ha−1)b — 0.92 1.15 1.04 1.01

Productivity (kg CWE ha−1)b 45.5 66.8 95.8 93.6 94.6

Productivity (kg CWE head−1)b 40.0 48.0 55.0 57.3 62.9

Beef production (Mt CWE)a 1.18 1.79 2.08 2.04 2.06

Land use (Mha)
Total pasture areac 24.8 28.0 25.1 25.0 24.7

Restored pasture area — 2.80 5.00 3.90 3.51

Economic outputs

Accumulated investment (US$ billion) — 3.12 5.31 4.44 3.91

Operational costs (US$ ha−1)b 63.9 121 177 167 162

Operational costs (US$ head−1)b 56.1 86.8 102 102 108

Operational costs (US$ kg CWE−1)b 1.40 1.81 1.85 1.78 1.72

Pro� t margin (US$ ha−1)b 77.8 86.9 119 124 131

Pro� t margin (US$ head−1)b 60.3 62.5 68.5 75.7 86.9

Pro� t margin (US$ kg CWE−1)b 1.42 1.30 1.25 1.32 1.38

Net present value (US$ ha−1)b,d — 619 684 765 840

GHG emissions (MtCO2e)e

Enteric CH4
a 61.0 74.7 73.7 70.2 68.5

Manure—CH4
a 1.42 1.73 1.70 1.63 1.59

Manure—N2O
a 6.15 8.73 9.41 8.93 8.32

Fertilizers—N2O and CO2
a 0.4 3.29 5.77 4.58 4.21

Land use changef — −
0.03 (±0.03)

−0.04

(±0.04)
−0.10

(±0.07)
−0.13

(±0.09)
Manufacture inputs and machinery—CO2

a 0.61 2.09 3.11 2.74 2.98

Fossil fuels—CO2
a 0.11 0.20 0.24 0.29 0.35

Electrical energy—CO2
a 0.04 0.04 0.04 0.04 0.04

Sequestration CO2
a — 5.36 (±1.32) 10.1 (±2.54) 7.98 (±1.99) 7.09 (±1.92)

Net emissionsa 69.8 85.3 (±1.37) 83.8 (±2.61) 80.4 (±2.09) 78.8 (±2.05)
Relative GHG emissions (kg CO2e head−1)e

CH4 entericb 2098 1 951 1 863 1 871 1 949

Manure emissions—CH4 and N2O
b 260 273 281 281 282

Net emissionsb 2402 2 230 (±34.5) 2 117 (±64.1) 2 141 (±53.1) 2 241 (±54.6)
Net emissions (Kg CO2e kg CWE−1)b 59.1 45.6 (±0.7) 37.4 (±1.2) 36.3 (±1.0) 35.0 (±0.9)

a For projected scenarios, it include both intensi� ed and non-intensi� ed systems.
b For projected scenarios, these values are from intensi� ed areas. Values for non-intensi� ed area are the same as of current.
c The three MIX-intervention scenarios occur in the context of strong environmental governance (Rochedo et al 2018), and therefore re� ect

similar rates of land use change, whereas the BASE scenario assumes higher deforestation rates. As such, pasturelands in the MIX-scenarios

differ only as a function of the additional soy-corn cropland area needed to feed the herd.
d Unlike the other outputs, the values corresponds to 2012 since the future values are brought to the present.
e Values in parenthesis represent the uncertainty bounds.
f We account emissions from land use change to meet the additional cropland demand for feedstuff (table S4). We use regional management

factors for the change in soil organic carbon (SOC) storage due to land use change (table S8). The negative signal means a carbon

sequestration.

Note. US$=R$ 2.35 (average value for 2014).
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3.9% and 7.8% higher than that of MIX-FEED and
MIX-FEED+, respectively.

In all scenarios, the return-on-investment is posi-
tive for most municipalities. In sum, the most eco-
nomically viable scenario is MIX-FEED+, followed by
MIX-FEED and MIX-PAST. Conversely, the least eco-
nomically attractive scenario is the BASE, in which the
average NPV is 26% lower than that of MIX-FEED+
(table 2).

3.3. GHG emissions and budgets
Livestock’s major source of GHG is methane from
enteric emissions. In Mato Grosso, these emissions
amounted to 61 MtCO2e in 2012, which represents
87% of all GHG emissions. While this number is
poised to increase as the herd grows (table 2), the share
of methane to total GHG emissions varied between
76% and 82% in the projected scenarios (� gure 4). In
the intensi� cation scenarios the largest emissions from
enteric fermentation will occur in the MIX-PAST
scenario (74 MtCO2e) due to its bigger herd. Con-
versely, the MIX-FEED and MIX-FEED+will emit 1.8
and 5.2 MtCO2e less, respectively (table 2), while
producing the same amount of beef as in the MIX-

PAST scenario. Emissions from manure (CH4 and
N2O) are also proportional to the herd, even though
concentrated feeding with higher protein content in
both feedlots and improved pasture increases the ratio
between manure/enteric emissions from the current
12%–15% by 2030. N2O proportions in manure
emissions rises from 81% to 85% in all scenarios by
2030 (� gure 4 and table 2).

GHG emissions from fertilizers (CO2 and N2O)
are proportional to the area of improved pasture
(restoration and maintenance) and the area of crop-
land needed to produce the grains used in the animal’s
diet. In the MIX-PAST scenario, these emissions
amount to 5.8 MtCO2e yr−1 by 2030 (6.1% of total
emissions), that stem from pasture improvement
(98%) and crops needed for feeding animals (2%). In
the MIX-FEED and MIX-FEED+ scenarios, emissions
from fertilizers amount to 4.6 and 4.2 MtCO2e yr−1,
respectively, 21%–27% less than those of the MIX-
PAST scenario. In the BASE scenario, these emissions
will represent 3.6% of their total emissions by 2030
(table 2). We also account for the impacts of land use
change for accommodate the additional demand for
cropland to produce grains to feed the herd. As the

Figure 3. Current and modeled stock densities (AU/ha) and pro� t margin (US$/ha/year) by 2030 across mato grosso.

Figure 4. GHG balance per source, at the present (current) and under projected scenarios by 2030.

8

Environ. Res. Lett. 14 (2019) 125009



is the mitigated portion of marginal emissions. Indeed,
a strategy for intensi� cation heavily based on pasture
restoration does reduce GHG emission compared to
the baseline scenario, while increasing animal produc-
tion. At the same time, our analysis demonstrates that
an intensi� cation strategy mix with a more diverse
portfolio of practices, most notably grain-feed supple-
mentation both for grazing and con� ned animals, will
be more effective both in terms of economic returns
and GHG emission reductions. As such, investments
in enhanced nutritional management of the herd,
specially by grain-feed supplementation either on
pasture or in feedlots are more likely to prompt better
economic, productive, and, in particular, environ-
mental outlooks for the cattle sector in Brazil.

Although our analysis is limited to Mato Grosso,
the implications of livestock intensi� cation in this
state may have consequences for adjacent areas. A
more intensi� ed livestock sector may put less pressure
on the formation of new pastures, as illegal deforesta-
tion puts intensi� cation investments at risk, if envir-
onmental embargos and bans of bank loans are truly
enforced in the beef supply chain (Soares-Filho and
Rajão et al 2018). At the same time, there is a need for
further research on the consequences of this intensi� -
cation on other agricultural sectors. For instance, a
more commonplace use of grain-feed supplementa-
tion increases demand for other agricultural sectors
and may in turn drive indirect demand for new land
(Barona et al 2010, Arima et al 2011), although this can
be partially compensated with the expansion of double
cropping systems. Such analysis may shed more light
on the possibilities for mixing different intensi� cation
strategies in order to optimally meet economic and
environmental targets.

Finally, our study has exclusively focused on one
ecosystem service (gas regulation—Costanza et al
2017). Future research efforts may need to investigate
other environmental bene� ts of livestock intensi� ca-
tion in order to complement our analysis of GHG
emissions.
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